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Abstract. The Depot-Free Multiple Traveling Salesperson Problem
(DFmTSP) is a variant of the classic Multiple Traveling Salesperson
Problem (mTSP). In general, the purpose of the DFmTSP is that
m salespersons must visit all the vertices of a given input complete
weighted graph G = (V,E,w) by minimizing an objective function. It
has many applications in network optimization, routing, and logistics. Its
main difference from other similar routing problems is that depots are
not considered. In this paper, we introduce a Two-Phase constructive
heuristic that uses an algorithm for the capacitated vertex k-center
problem (CVKCP) in the first phase. For the second phase, a
state-of-the-art heuristic for the classic TSP is used. The performed
empirical evaluation shows that the proposal is capable of finding feasible
and good-quality solutions in comparison to elaborated metaheuristics of
the literature. Even more important, the proposal outperforms a novel
metaheuristic when a percentage of imbalance between the number of
vertices in the salespersons’ paths is considered. Besides, one of the
main advantages of the proposal is that it can find solutions in practical
running times, which may be an important feature in certain situations.

Keywords: Network optimization, routing, heuristics, k-center, mTSP.

1 Introduction

Multiple Traveling Salesperson Problems (mTSPs) are a family of NP-hard
combinatorial optimization routing problems that generalize the classical
Traveling Salesperson Problem (TSP). The mTSPs receive a complete weighted
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graph G = (V,E,w) and a positive integer m as input. The purpose is to
look for m paths for the salespersons that visit all the vertices in V (G) by
minimizing an objective function associated with the costs of the edges E(G)
[8]. In general, mTSPs can be applied in many routing and scheduling contexts,
such as submarine patrol routing, bus routing, supervisor allocation, and some
variants of job scheduling problems. Among the most popular studied variants
of mTSP, two categories stand out:

– mTSPs that consider depots as part of the problem [12]:
• SmTSP: All the salespersons must start their paths from a single defined

vertex known as “depot”.
• MmTSP: There are multiple defined depots.

– mTSPs that do not consider depots at all [8]. These are known in the
literature as Depot-Free mTSPs (DFmTSP).

Besides, mTSPs can also be classified according to the nature of the paths
of the salespersons:

– Closed paths mTSPs (CP-mTSPs).
– Open paths mTSPs (OP-mTSPs).

In this context, a path is said to be closed if each salesperson starts and
finishes its path at the same vertex. Otherwise, the path is said to be open.
Among these mTSPs variants, DFmTSPs have received less attention in the
literature in comparison with others, although they are considered one of the
most fundamental variants [8]. This work focuses on the CP-DFmTSP. Besides,
additional constraints to the maximum number of vertices each salesperson
can visit are also considered. These are known in the literature as bounding
constraints [12].

The rest of the paper is organized as follows: Section 2 reviews the related
work of mTSPs and emphasizes the work focused on the DFmTSPs. Section
3 describes the proposal, a Two-Phase heuristic that uses the Cluster-First
Route-Second strategy. Section 4 presents the carried out computational
experimentation and performs an analysis of the results. Also, it discusses the
advantages and disadvantages of the proposal. Finally, Section 5 states the
conclusions and future work.

2 Literature Review

In general, mTSPs have been tackled through various optimization techniques,
such as integer programming, approximation algorithms, exact algorithms, and
heuristics and metaheuristics proposals. The initial integer programs (IPs) were
proposed between 1960 and 1976 [16, 22, 9]. Over time, these IPs have been
extended and improved to include considerations to address more realistic
scenarios. [12] presented bounding constraints for these IPs for the SmTSP and
MmTSP cases. In the context of the mTSP, bounding constraints specify that
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each salesperson must visit a minimum and/or maximum number of vertices.
In the literature, most of the IPs have been proposed for mTSPs that consider
depots as part of the problem. Nevertheless, recent advances in the literature
have presented integer programs that are capable of dealing with both: mTSPs
that consider depots and mTSPs that do not, and a combination between them
[8]. Other recent proposals include the study of polyhedral approaches and
branch-and-cut algorithms [2].

Besides IPs, other alternatives have been explored to approach mTSPs. As
previously mentioned, mTSPs are NP-hard. For this reason, in the last years,
many researchers have proposed heuristic and metaheuristic algorithms in order
to try to solve relatively big instances in practical running times. Among all the
heuristics and metaheuristics proposed for mTSPs, evolutionary computing and
some of their variants stand out [3, 26, 13].

Some recent proposals for the mTSP consist of hybridizing genetic algorithms
with other metaheuristic algorithms. Such is the case of [11], where a genetic
algorithm and an ant algorithm are combined, and [24], where a genetic
algorithm is integrated with an invasive weed algorithm (IWO). Further, variants
of ant algorithms have been used for similar routing problems like the mTSP
with capacity and time windows [23] and the multi-objective Green Vehicle
Routing Problem [15]. Other approaches that have been explored for mTSPs,
are Two-Phase heuristics, which, as the name suggests, are procedures composed
of two algorithm stages [1]. Among these, two main strategies stand out.

– Cluster-First Route-Second. The first phase consists of clustering the
vertices; then, the second phase determines a feasible route for each cluster.

– Route-First Cluster-Second. The first phase consists of generating a large
route that visits all the vertices; then, the second phase partitions such route
into smaller routes.

These Two-Phase approaches have been widely used in some works for
mTSPs. For SmTSP, in [3], a Route-First Cluster-Second strategy is used, and
then a GA with intra-route heuristics is used to improve the quality of the routes.
Other proposals have used the Cluster-First Route-Second, such as [25], where
a variation of the k-means algorithm is used at the clustering phase, then a
GA is used to build a route within each cluster. In fact, most works have used
variations of the k-means algorithm for the clustering phase for mTSPs [14, 20,
19]. An interesting point of [19] is that the authors used a parallel approach to
improve the running times. Regarding MmTSP the situation is similar, variations
of the k-means clustering have been used in [21, 17]. It is worth noting that,
for the second phase, most authors have used GAs, ant-based algorithms, and
hybridizations between them.

It is important to remark that, although there are many proposals for the
mTSPs, just a few focuses on the specific variant of this paper (DFmTSP).
In fact, in the literature on mTSPs, many works study the SmTSP, but
they refer to it just as the mTSP. On the contrary, there are also a few
papers where the DFmTSP is studied but referred to as the MmTSP. This is
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deeply clarified in [8]. This paper studies the DFmTSP by considering two key
points: depots do not exist in the problem statement, and there are bounding
constraints. As far as we know, a few papers approach this specific variant.
Among the last heuristic/metaheuristic proposals that consider these specific
constraints, Zhou et al. [26] proposes a Partheno Genetic Algorithm (PGA) that
considers lower-bound constraints. Also, [11] proposes a metaheuristic combining
an Ant Colony and a PGA. This algorithm is called AC-PGA and considers
both lower-bound and upper-bound constraints. According to the presented
experimentation in [11], AC-PGA outperforms other proposals in terms of
finding better quality solutions.

Regarding the objective functions for the mTSPs, two popular objective
functions were initially considered in [4]. The first one is called minsum mTSP,
where the objective is to minimize the sum of the cost of the salespersons’ paths.
The second objective function is known as the minmax mTSP, which consists of
minimizing the longest path among the salespersons. However, the first one has
become the most popular in the literature.

3 A Two-Phase Constructive Heuristic

This section introduces a Two-Phase constructive heuristic for the DFmTSP
with upper-bound constraint. The proposal is based on the capacitated vertex
k-center problem (CVKCP).

Along with k-means, k-center problems are natural clustering methods.
In particular, the capacitated version imposes load-balance by considering an
upper bound on the number of clients each center can attend. The vertex
k-center problem (VKCP) has been used in the literature to design efficient
constructive heuristics for the DFmTSP [18]. Nevertheless, it can not be used
for the DFmTSP with bounding constraints since the VKCP does not restrict
the maximum number of vertices that can be assigned to each center. As far as
we know, the capacitated version has not been used as a clustering strategy for
mTSPs in the literature. Thus, this work explores the advantages of using the
capacitated vertex k-center problem as a clustering technique for the DFmTSP
with bounding constraints. One of the main advantages, is that the CVKCP can
create clusters with a maximum number of assigned vertices to each center, this
characteristic is useful for the DFmTSP to limit the number of assigned vertices
in each path, which is equivalent to the upper-bound constraint for mTSPs.
Algorithm 1 shows the pseudocode of the Two-Phase proposed heuristic. The
notation for this algorithm is the following:

– m is the number of salespersons.
– p = {p1, p2, · · · , pm} is a solution for the DFmTSP composed by m

salespersons paths.
– pi is a salesperson path (a sequence of vertices) of a solution p.
– k is the number of centers for the CVKCP.
– C is the set of centers C ⊆ V (G).
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– PC is the assignment function PC : V (G) \ C → C.
– U is the maximum number of vertices each salesperson can visit

(upper-bound constraint).
– Pcj is the subset of the assignment that contains only tuples of the form

(u, cj).
– dom

(
Pcj

)
is the set of vertices assigned to be covered by center cj .

Algorithm 1: Two-Phase Constructive Heuristic.
Input: A weighted graph G = (V,E,w), and two positive integers m

and U
Output: A set of salespersons tours p = {p1, p2, · · · , pm}

1 p← ∅
2 k ← m
3 (C,PC)← kCenterClustering(G, k, U)
4 foreach ci ∈ C do
5 X ← dom (Pci) ∪ {ci}
6 pi ← TSPRouting(G[X])
7 p← p ∪ {pi}
8 end
9 return p

3.1 Clustering Phase

As mentioned before, the k-center algorithms have been used for clustering
purposes. Thus, in this section we propose the usage of a heuristic that has proven
to be effective in approaching the CVKCP. The used algorithm is known in the
literature as the One-Hop Farthest-First heuristic (OHFF) [7]. This heuristic
is based on an exact algorithm for the CVCKP [6], and exploits a relationship
between the CVKCP and other combinatorial optimization problem known as
the Minimum Capacitated Dominating Set (MCDS). Besides, in [6] is stated
the CVKCP can be solved through a series of MCDS problems. The formal
relationship is described in the Theorem 1 whose detailed proof can be consulted
at [6]. It is known that the CVKCP and the MCDS are both NP-hard. Thus, in
a general overview, the OHFF tries to solve the CVKCP by greedily trying to
solve MCDS subproblems through a binary search. One of the main features of
the OHFF is that parallel computing can be used to improve the running times.
Algorithm 2 shows the pseudocode of the OHFF.

Theorem 1. The minimum capacitated dominating set (MCDS) over the
bottleneck graph GOPT = (V,EOPT ) is the optimal solution to the CVKCP over
the original input graph G = (V,E,w), where OPT is the value of the optimal
solution to the latter problem.
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Algorithm 2: One-Hop Farthest-First (OHFF) for the CVKCP [7].
Input: A complete weighted graph G = (V,E,w), two positive integers

k and U , and a non-decreasing list of the m edge weights of G,
i.e., w(e1), w(e2), ..., w(em), where w(ei) ≤ w(ei+1)

Output: A set of vertices C ⊆ V , such that |C| = k,
and an assignment PC : V \ C → C

1 high← m
2 low ← 1
3 (C,PC)← (∅, ∅)
4 while low ≤ high do
5 mid← ⌊(high+ low)/2⌋
6 (C ′, PC′)← GreedyMCDS (G, k,w(emid), U)
7 if r(C ′, PC′) ≤ r(C,PC) then
8 (C,PC)← (C ′, PC′)
9 end

10 if r(C,PC) ≤ w(emid) then
11 high← mid− 1
12 else
13 low ← mid+ 1
14 end
15 end
16 while |C| < k do
17 v ← argmax {d (u, PC (u)) : u ∈ V \ C}
18 PC ← PC \ {(v, PC (v))}
19 C ← C ∪ {v}
20 end
21 foreach ci ∈ C do
22 X ← dom (Pci) ∪ {ci}
23 cj ← argmin {max{d(u, v) : v ∈ X} : u ∈ X}
24 PC ← PC \ Pci

25 Pcj ← {(v, cj) : X \ {cj}}
26 PC ← PC ∪ Pcj

27 end
28 return (C,PC)

3.2 Routing Phase

In the routing literature, many algorithms have been proposed for the classical
Traveling Salesperson Problem (TSP) [5]. Among these proposals, there are
some exact algorithms that guarantee to find the optimal solution. However,
since TSP is NP-hard, such algorithms may have an important limitation.
Other proposals are approximation algorithms that do not guarantee finding
an optimal solution but a solution inside a ratio of the optimal one. Likewise,
heuristics do not guarantee optimality but are fast and very effective in finding
near-optimal solutions. Metaheuristics are more elaborated procedures that use
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exploration and exploitation components to escape from local optimals during
search. Lin–Kernighan heuristic (LKH) is one of the best heuristics for the TSP
[10]. It is a local search algorithm that improves an input tour (Hamilton cycle)
by exploring its neighborhood. Every time a shorter tour is found, the process
is repeated until no better tour can be found. For this specific heuristic, a
neighborhood is defined by considering the number of edges that are in one
tour but not the other. For the routing phase of our proposal, we use the
Lin-Kernighan algorithm since it has proven to be effective for TSP instances
with thousand of vertices. Besides, an efficient implementation is provided in
http://webhotel4.ruc.dk/~keld/research/LKH/.

4 Computational Experimentation and Analysis

We performed an empirical evaluation of the proposal over some instances of
the TSPLIB dataset. For comparison purposes, we implemented the AC-PGA
metaheuristic [11], which is one of the best metaheuristics for this specific variant
of the problem. For the experimentation, we used the m values in the set {5, 10},
and for the upper bound U we used the values in {⌈n/m⌉, ⌈n/m × 1.1⌉}. We
refer to the value ⌈n/m⌉ as a 0% of imbalance whereas ⌈n/m × 1.1⌉ as a
10% of imbalance. The algorithms were implemented in the C++ programming
language. All the experiments were carried out on a platform with Intel Core
i9-13900, 64 GB RAM, under an OS Ubuntu 22.04.4 LTS 64-bit with a
GCC 11.4.0 compiler. The version of the LKH is 2.0.10. All datasets and the
implementation of the Two-Phase constructive heuristic can be consulted in
https://gitlab.com/alex.ca/DFmTSP-TP. The parameter setting of the LKH
used in our proposal, and the configuration of the AC-PGA are shown in Tables
1 and 2.

Tables 3 and 4 show the obtained results for 0% and 10% of imbalance of
the three tested algorithms, where OHFF+ is the OHFF heuristic but executed
|V (G)| times with a different initial chosen vertex. The objective function is
minsum. For the AC-PGA column, fbest is the objective value of the best-found
solution of 30 independent runnings, whereas fµ is the average, σ is the standard
deviation, and t(s) is the average running time in seconds. For the OHFF/LKH
column, fbest is the objective value of the best-found solution of performing 30
independent runnings of the OHFF for the CVKCP and then running the LKH
in the routing phase, fµ is the average of the 30 runnings, σ is the standard
deviation, and t(s) is the average of the sum of both running times, the clustering
phase and the routing phase. Due to the nature of the OHFF algorithm, some
solutions for the CVKCP may include clusters with only one vertex.

In these cases, a salesperson path can not be constructed. Then, such
solutions were ignored. For the OHFF+/LKH, the columns are the same as the
previous but with the difference that OHFF+ was used. Note that the standard
deviation of the latter is always 0 because the OHFF+ algorithm is deterministic.
From these tables, we observe that when the percentage of imbalance is 0%
(Table 3), the AC-PGA was capable of finding some of the best solutions.
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Table 1. Parameter setting of the LKH [10].

Parameter Value
RUNS 1

TIME_LIMIT 0.1s
MOVE_TYPE 5
PATCHING_C 3
PATCHING_A 2

Table 2. Parameter setting of the AC-PGA metaheuristic [11].

Parameter Value
Population size 100

AC-PGA iterations 100
ACO iterations 100

ρ 0.1
α 2
β 8
γ 0.5

Nevertheless, an important remark is that the running times of AC-PGA are
much higher than the proposals that use the OHFF as the clustering phase.
For the case where 10% of imbalance is allowed (Table 4), most of the best
solutions were found by the proposals that use the OHFF and the LKH. Thus,
we conclude that, at least for the tested instances, the proposed Two-Phase
heuristic is capable of finding better solutions when imbalance is allowed among
the paths. Furthermore, the running times of the Two-Phase heuristic are many
orders of magnitude lower than those of the AC-PGA metaheuristic.

Fig. 1 shows the printed solutions by the tested algorithms over the instance
kroA200 with a 10% of imbalance. From this figure, we can observe that the
best-found solutions by the AC-PGA contain some overlaps between the paths
of the salespersons. On the contrary, solutions computed by the Two-Phase
heuristic proposals have fewer overlaps, and the paths are better refined due
to the LKH.

Fig. 2 and Fig. 3 show the convergence of the AC-PGA metaheuristic over the
instance kroA200 with 0% and 10% of imbalance respectively. In these figures,
the dotted lines represent the objective values of the solutions computed by
the Two-Phase heuristic proposals. It is important to note that the Two-Phase
heuristic proposals do not have generations since they are constructive heuristics.
Nevertheless, they are shown in the figures for contrast purposes. In these figures,
it can be observed that the proposals can find good quality solutions compared
to the AC-PGA. However, due to the nature of AC-PGA metaheuristic, its
exploration and exploitation components could cause the algorithm to escape
from local optima, which could give the possibility that during the generations,
the solution found may eventually be better than those found by the Two-Phase
heuristic proposals, such is the case of the Fig. 2(b).
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Table 3. Results over some instances of the TSPLIB dataset with 0% of
imbalance. The best-found solutions are bold.

Instance n m U
AC-PGA OHFF/LKH OHFF+/LKH

fbest fµ σ t(s) fbest fµ σ t(s) fbest fµ σ t(s)

kroA100 100 5 20 25016 25823 485.28 87 23554 27864 1640.57 0.0023 23554 23554 0 0.035
10 10 26593 27371 487.34 86 29984 36203 2975.18 0.0033 30895 30895 0 0.058

kroB100 100 5 20 24742 26100 619.73 87 28223 30112 748.05 0.0022 24821 24821 0 0.036
10 10 27332 28421 622.52 87 33756 40930 3799.44 0.0031 29802 29802 0 0.057

kroA150 150 5 30 30872 32510 618.19 199 30513 35621 2386.67 0.0027 31577 31577 0 0.098
10 15 33056 34869 620.26 195 36779 44823 2763.87 0.0029 40862 40862 0 0.139

kroB150 150 5 30 30730 32320 565.49 199 29894 33882 3070.23 0.0023 29224 29224 0 0.095
10 15 33826 35106 643.54 194 34829 46986 5240.63 0.0027 35186 35186 0 0.129

kroA200 200 5 40 35503 36994 722.84 355 34618 37381 1257.45 0.0020 32284 32284 0 0.206
10 20 38968 40348 605.29 347 40126 46134 3567.72 0.0027 35367 35367 0 0.318

kroB200 200 5 40 34831 36393 577.19 355 33191 36795 1159.41 0.0022 34059 34059 0 0.218
10 20 36222 38667 961.79 347 35539 47045 4400.87 0.0027 36715 36715 0 0.272

pr226 226 5 46 105262 107910 1586.42 452 102824 118669 9376.52 0.0016 107812 107812 0 0.167
10 23 110059 114034 1961.42 442 126819 152624 17007.07 0.0026 125730 125730 0 0.233

pr264 264 5 53 58210 59999 895.17 617 60286 60864 443.44 0.0019 60552 60552 0 0.297
10 27 53252 54709 831.13 608 50868 58201 7412.33 0.0024 51762 51762 0 0.301

pr299 299 5 60 58254 59787 687.26 791 55176 56996 2044.10 0.0022 54629 54629 0 0.351
10 30 62728 64485 855.80 782 65223 72845 5111.33 0.0030 67588 67588 0 0.548

pr439 439 5 88 132677 136023 1630.25 1706 117113 121844 3746.26 0.0044 118061 118061 0 1.124
10 44 140475 143925 1412.78 1682 140638 167431 13625.24 0.0076 145451 145451 0 1.803

Table 4. Results over some instances of the TSPLIB dataset with 10% of
imbalance. The best-found solutions are bold.

Instance n m U
AC-PGA OHFF/LKH OHFF+/LKH

fbest fµ σ t(s) fbest fµ σ t(s) fbest fµ σ t(s)

kroA100 100 5 22 25116 25896 425.99 87 24418 28151 1706.43 0.0021 24499 24499 0 0.031
10 11 26582 27463 413.00 87 25605 31282 3347.16 0.0032 26745 26745 0 0.051

kroB100 100 5 22 25651 26300 384.15 87 25651 29820 1790.54 0.0021 25647 25647 0 0.035
10 11 26262 27985 901.65 87 27186 29427 1405.30 0.0029 27560 27560 0 0.052

kroA150 150 5 33 31301 32756 551.65 199 31393 34347 2015.50 0.0023 29732 29732 0 0.092
10 17 33740 35252 667.75 196 32192 36397 3994.71 0.0026 31820 31820 0 0.110

kroB150 150 5 33 31251 32432 548.34 199 28861 32195 2963.20 0.0024 29601 29601 0 0.082
10 17 32713 34371 646.82 196 30496 33561 1539.51 0.0031 31463 31463 0 0.111

kroA200 200 5 44 36059 37283 491.31 355 35121 38331 2317.41 0.0020 32343 32343 0 0.201
10 22 38393 40014 609.98 348 36279 38180 2100.52 0.0027 34599 34599 0 0.246

kroB200 200 5 44 35456 36605 553.96 355 33495 37481 2284.02 0.0022 34716 34716 0 0.205
10 22 37361 39150 655.16 349 35087 41324 4751.43 0.0028 35946 35946 0 0.244

pr226 226 5 50 98788 104878 2516.27 449 100707 111289 6742.86 0.0015 107997 107997 0 0.144
10 25 96528 107709 3589.47 441 105342 129225 10807.50 0.0017 127776 127776 0 0.213

pr264 264 5 59 59181 61050 622.76 617 60789 60798 45.77 0.0020 60789 60789 0 0.263
10 30 52405 54504 948.33 608 50480 55964 5127.32 0.0021 50144 50144 0 0.314

pr299 299 5 66 59125 60544 622.18 792 52861 58107 2706.32 0.0018 53936 53936 0 0.324
10 33 62671 65695 1022.61 792 56627 62990 5636.68 0.0025 58514 58514 0 0.454

pr439 439 5 97 131110 135665 1700.13 1817 115286 119869 2922.18 0.0050 125807 125807 0 1.081
10 49 139017 144026 1815.28 1682 127688 139649 6790.23 0.0042 137703 137703 0 1.413
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minsum= 36059

(a) AC-PGA, m = 5

minsum= 38393

(b) AC-PGA, m = 10

minsum= 35121

(c) OHFF/LKH, m = 5

minsum= 36279

(d) OHFF/LKH, m = 10

minsum= 32343

(e) OHFF+/LKH, m = 5

minsum= 34599

(f) OHFF+/LKH, m = 10

Fig. 1. Printed solutions of the kroA200 instance with 10% of imbalance.
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Fig. 2. Convergence plot of AC-PGA over instance kroA200 with
0% of imbalance. OHFF/LKH and OHFF+/LKH are included for
comparative purposes.

0 20 40 60 80 100
Generations

32000

33000

34000

35000

36000

37000

38000

39000

m
in

su
m

kroA200, m=5, U=44
AC-PGA
OHFF/LKH
OHFF+/LKH

(a)

0 20 40 60 80 100
Generations

36000

38000

40000

42000

44000

m
in

su
m

kroA200, m=10, U=22
AC-PGA
OHFF/LKH
OHFF+/LKH

(b)

Fig. 3. Convergence plot of AC-PGA over instance kroA200 with
10% of imbalance. OHFF/LKH and OHFF+/LKH are included for
comparative purposes.
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5 Conclusions and Future Work

In this paper, a Two-Phase constructive heuristic for the Depot-Free Multiple
Traveling Salesperson Problem (DFmTSP) was proposed. The main feature
of our proposal is that a state-of-the-art heuristic for the capacitated vertex
k-center problem (CVKCP) is used in the clustering phase, which is known as
the One-Hop Farthest-First (OHFF). For the routing phase, a state-of-the-art
heuristic called Lin-Kernighan (LKH) was used. The obtained results show that
the proposed Two-Phase heuristic was able to find feasible and good-quality
solutions in comparison with a state-of-the-art metaheuristic that employs
elaborated exploration and exploitation mechanisms. Besides, reported running
times support that the proposed Two-Phase heuristic is a good choice
when practical running times matter. Some future work directions may arise
from this research. For instance, working with dynamic clusters may be of
interest. This can be performed through an evolutionary or metaheuristic that
employs components to handle partitions of the set of vertices, then applying
intensification methods over the partitions such as the LKH to find better
quality solutions iteratively. This approach may lead to finding better solutions
in comparison to working with static clusters/partitions, just as we worked in
this research.
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